Diverse substrate recognition and hydrolysis mechanisms of human NUDT5

نویسندگان

  • Takao Arimori
  • Haruhiko Tamaoki
  • Teruya Nakamura
  • Hiroyuki Kamiya
  • Shinji Ikemizu
  • Yasumitsu Takagi
  • Toru Ishibashi
  • Hideyoshi Harashima
  • Mutsuo Sekiguchi
  • Yuriko Yamagata
چکیده

Human NUDT5 (hNUDT5) hydrolyzes various modified nucleoside diphosphates including 8-oxo-dGDP, 8-oxo-dADP and ADP-ribose (ADPR). However, the structural basis of the broad substrate specificity remains unknown. Here, we report the crystal structures of hNUDT5 complexed with 8-oxo-dGDP and 8-oxo-dADP. These structures reveal an unusually different substrate-binding mode. In particular, the positions of two phosphates (α and β phosphates) of substrate in the 8-oxo-dGDP and 8-oxo-dADP complexes are completely inverted compared with those in the previously reported hNUDT5-ADPR complex structure. This result suggests that the nucleophilic substitution sites of the substrates involved in hydrolysis reactions differ despite the similarities in the chemical structures of the substrates and products. To clarify this hypothesis, we employed the isotope-labeling method and revealed that 8-oxo-dGDP is attacked by nucleophilic water at Pβ, whereas ADPR is attacked at Pα. This observation reveals that the broad substrate specificity of hNUDT5 is achieved by a diversity of not only substrate recognition, but also hydrolysis mechanisms and leads to a novel aspect that enzymes do not always catalyze the reaction of substrates with similar chemical structures by using the chemically equivalent reaction site.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular mechanism of ADP-ribose hydrolysis by human NUDT5 from structural and kinetic studies.

Human NUDT5 (hNUDT5) is an ADP-ribose (ADPR) pyrophosphatase (ADPRase) that plays important roles in controlling the intracellular levels of ADPR and preventing non-enzymatic ADP-ribosylation of proteins by hydrolyzing ADPR to AMP and ribose 5'-phosphate. We report the crystal structure of hNUDT5 in complex with a non-hydrolyzable ADPR analogue, alpha,beta-methyleneadenosine diphosphoribose, an...

متن کامل

Dark Hydrogen Fermentation From Paper Mill Effluent (PME): The influence of Substrate Concentration and Hydrolysis

Paper mill effluent (PME) was used as an organic feedstock for production of biohydrogen via dark fermentation using heat-shock pretreated anaerobic sludge under mesophilic conditions. The influence of substrate concentration (5, 10 and 15 g-COD/L) and the initial pH (5 and 7) on the efficiency of dark hydrogen fermentation from PME were investigated. The highest hydrogen yield of 55.4 mL/g-COD...

متن کامل

A novel mechanism for preventing mutations caused by oxidation of guanine nucleotides.

MutT-related proteins, including the Escherichia coli MutT and human MutT homologue 1 (MTH1) proteins, degrade 8-oxo- 7,8-dihydrodeoxyguanosine triphosphate (8-oxo-dGTP) to a monophosphate, thereby preventing mutations caused by the misincorporation of 8-oxoguanine into DNA. Here, we report that human cells have another mechanism for cleaning up the nucleotide pool to ensure accurate DNA replic...

متن کامل

Enhancing Enzymatic Hydrolysis of Cellulose by Ultrasonic Pretreatment

Slurries of rice-straw cellulose (obtained by delignification and removal of hemicelluloses from the powdered raw material) were subjected to ultrasonic waves at different intensities for various times (constant temperature). Susceptibility of the samples to cellulose-hydrolysis increased initially with pretreatment time, reaching a maximum or a constant level thereafter. Maximum glucose yi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2011